skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Reierson, Makenna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As concerns rise about the health risks posed by per- and polyfluoroalkyl substances (PFAS) in the environment, there is a need to understand how these pollutants accumulate at environmental interfaces. Untangling the details of molecular adsorption, particularly when there are potential interactions with other molecules in environmental systems, can obscure the ability to focus on a particular contaminant with molecular specificity. Often adsorption studies of environmental interfaces require a reductionist approach, where laboratory experiments may not be fully tractable to environmental systems. In this work, we study polyfluorinated dodecylphosphonic acid (F21-DDPA) at the aqueous surfaces of distilled water (the most reduced “environmental” surface) and river water to explore the use of vibrational sum-frequency (VSF) spectroscopy as an experimental probe of fluorinated contaminants at natural environmental surfaces. We demonstrate how VSF spectroscopy offers advantages over nonspecific surface tension measurements when measuring PFAS adsorption isotherms at river water surfaces. VSF spectra of the C–F stretching region selectively probe the presence of F21-DDPA and can be used to extract meaningful structural insights and calculate surface concentrations, even at the complex river water surface. This study highlights the potential for VSF spectroscopy to be developed as a probe of fluorinated contaminants at natural environmental interfaces. 
    more » « less